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The formation of a periodic vortex and current structures in the ferromagnet/superconductor bilayer with
finite interlayer distance a is considered when the ferromagnetic film has a stripe domain structure with
out-of-plane magnetization. The integrodifferential equation which determines the current and vortex distribu-
tion in the superconducting �SC� film is derived. The analytical solutions are obtained for two limiting cases:
L�� �the narrow-domain structure� and L�� �the wide-domain structure�, where L is the width of the domain

and �=
�L

2

ds
is the effective penetration depth �where �L is the London penetration depth and ds is the thickness

of the SC film�. The conditions for existence of two periodic vortex structures in the SC are found �i� for the
chains of vortices/antivortices �one vortex/antivortex per domain� and �ii� for the domelike vortex distribution
characterized by the average vortex density n�x�. The value of the critical current �along the domains� of the
superconducting film is calculated. It is shown that there is the optimal interlayer distance a� corresponding to
the maximal value of the critical current at a given value of the magnetization.
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I. INTRODUCTION

Over the past few years a hybrid superconductor/
ferromagnet �SC-FM� system has attracted considerable in-
terest. If the proximity effect is suppressed by the oxide layer
between the SC and FM components, they interact via mag-
netic field �for a review, see Ref. 1�. This interaction results
in many interesting phenomena, even if the SC and FM are
not electrically coupled. The examples of such phenomena
are the pinning of vortices by small magnetic particles,2,3

spontaneous creation of a vortex-antivortex pair by the
FM,4–7 formation of a vortex-antivortex lattice in a thin su-
perconducting film, covered with a lattice of out-of-plane
magnetic dots,8 magnetic-field-induced superconductivity,9

and many others.
A lot of attention has recently been paid to supercon-

ductor ferromagnet bilayers �SFBs�.10–15 In Ref. 11 it was
studied that the equilibrium structure of SFB is formed by a
thin ferromagnet film with a perpendicular magnetic aniso-
tropy and a thin superconducting film. It was shown that the
SFB split into domains in which both the magnetization and
the vortex density alternate. Also the average vortex density
n was determined when the domain linear size L was much

greater than the effective penetration depth �=
�L

2

ds
. Here �L is

the London penetration depth and ds is the thickness of the
SC film: ds��L. It was found that the density nv�x� has a
strong singularity near the domain walls. Erdin et al.11 as-
sumed that this is due to the fact that the using approxima-
tion becomes invalid in a region of width � near the domain
walls. However as would be shown in the present paper the
perpendicular component of the magnetic field produced by
the FM and the sheet current density in the Meissner state of
SFB with narrow-domain structure �L��� diverge at the do-
main walls as well.

To avoid any singularities we analyze in this work the
formation of a periodic vortex structure in the composite
system, consisting of thin FM and SC films separated by
finite distance a �Fig. 1�. This parameter, just as the magne-

tization, determines the strength of interaction between the
vortex and FM film.

The paper is organized as follows. In the Sec. II the inte-
grodifferential equation for the current density in the SC film
is derived. The analytical solution of the equation for the
Meissner current density is found for two limiting cases:
L�� and L��. This solution is used in Sec. III to study the
total energy of the chain of the vortices with alternating di-
rections coinciding with the direction of the magnetization in
the ferromagnetic domain. The question of stability of such
vortex configuration is then analyzed. The mixed state of the
SC/FM heterostructure with many vortices per domain is
considered in Sec. III. In Sec. IV we study the influence of
the domain structure of the FM on the critical current of the
superconducting film �and conclusions are given in Sec. IV�.

FIG. 1. �Color online� Geometry of the system consisting of the
uniaxial ferromagnetic film located at distance a above thin super-
conducting film �dm�� , ds���. The magnetization vectors in the
domains are shown by the gray arrows. The blue arrows indicate the
vortices of different polarities located in the superconducting film.
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II. BASIC EQUATION

The ferromagnet-superconductor system under our con-
sideration is shown in Fig. 1. Let the easy magnetization axis
be parallel to the z axis. We assume that the ferromagnet has
the domain structure formed by strips of a fixed width L
parallel to the y axis. At the condition ��L �where � is the
domain-wall thickness� a good approximation of the magne-
tization is a steplike function along the x axis. The Fourier
expansion of this function at dm→0 is

M� = me�z��z − a��
k=0

4 sin
��2k + 1�x

L

��2k + 1�
.

As it follows from this expression, the magnetic current

j�FM=c rot M� has only one component jy
FM�x ,z� so that the

vector potential A� FM�x ,z� generated by the FM is also di-
rected along the y axis and can be obtained from the Max-
well equation,

rot rot A� FM =
4�

c
j�FM,

Ay
FM�x,z� = − 2m ln

cosh
��z − a�

L
+ cos

�x

L

cosh
��z − a�

L
− cos

�x

L

. �1�

According to Eq. �1� the magnetic field H� =rot A� FM has
two components: Hz�x ,z� and Hx�x ,z�. Specifically, the per-
pendicular component of the field at the SC film �z=0� is
given by the expression

Hz�x,z = 0� =

4�m cosh
�a

L

L

sin
�x

L

sin2�x

L
+ sinh2�a

L

. �2�

Depending on the distance a between the FM and SC the
maximum value of Hz�x ,z=0� may be reached either near
the domain walls �at a�a0, where a0= L

� arcsinh 1� or at the
center of the domain �a�a0� �Fig. 2�.

As was mentioned in Sec. I, the thickness of the
superconducting film is ds��L. Suppose that its width
w�− w

2 	x	
w
2 � and length b�− b

2 	y	
b
2 � satisfy the condi-

tions max�L ,���w�b. In the presence of the SC and FM

films the vector-potential A� �in the gauge div A� =0� satisfies
the equation


A� = −
4�

c
�j�FM + j�� , �3�

where j� is the current density induced in the superconducting
film by the magnetic field of the ferromagnet. Since the vec-

tor potential of the field A� FM�x ,z� is directed along the y axis,
i.e., along the SC strip, we can conclude that both j� and

A� �x ,z� are along the y direction also, as in the case of the SC

strip placed into uniform perpendicular magnetic field.16–18

In the thin-film approximation, the current density jy�x ,z� is
averaged over the thickness of the SC film. The average
current density is denoted by j�x� so that

jy�x,z� = dsj�x���z���w2

4
− x2� �4�

Then, Eq. �3� is solved by introducing the Green’s function
for the two-dimensional Laplacian, G�x−x� ,z−z��,17,18

Ay�x,z� = Ay
FM�x,z� − 4�ds�

−w/2

w/2

G�x − x�,z�j�x��dx�, �5�

where Ay
FM�x ,z� is determined by Eq. �1�. The current

density j�x� is connected with the vector potential
Ay�x ,z=0�=Ay�x� by the known London equation

Ay�x� = −
4��L

2

c
j�x� + �y�x� , �6�

where the last term �y�x� describes �in the continuous ap-
proximation� the contribution of vortices into Ay�x�. Substi-
tuting Eq. �6� into Eq. �5� at z=0 and differentiating both
sides of Eq. �5� with respect to x, we arrive at the following
integrodifferential equation—the Maxwell-London equation
for the sheet current density i�x�= jy�x�ds:

4��

c

di

dx
+

2

c
�

−w/2

w/2 i�t�dt

t − x
= − Hz�x� + �0n�x� , �7�

where Hz�x� is the perpendicular component of the magnetic
field, produced by the ferromagnet �Eq. �2��, �0 is the
magnetic-flux quantum, and n�x� is the averaged vortex den-
sity which should also be found from this equation. When
deriving Eq. �7�, we use �G�x−x�,0�

�x = 1
2��x−x��

.
It should be noted that longitudinal component of the

magnetic field Hx does not affect the solution of our problem
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FIG. 2. �Color online� Distribution of the sheet current density
iM�x� over the domain for narrow-domain structure for three values
of interlayer distance a between the SC and the FM films. Solid
symbols correspond to numerical solution of Eq. �10� and curves in
Eq. �11�. In the inset we present distribution of the magnetic field
induced by the FM.
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in thin-film geometry. Really, this field induces the Meissner
current flowing in opposite directions along two surfaces of
the SC film that leads to average zero value. Also, we can
neglect the suppression of the order parameter by Hx because
the ratio between the critical magnetic field perpendicular to
film direction Hz

c	�0 /
w� �Ref. 17� and critical magnetic
field parallel to film direction Hx

c	�0 /d is much smaller
than unity for our model system with d /w�1 and d /�L�1.
Therefore Eq. �7� is valid until the parallel component of the
magnetic field becomes comparable with Hx

c.
Due to the symmetry of the problem the sheet current

density satisfies the equation i�t−n L�= �−1�ni�t� and the sec-
ond term at the left-hand side of Eq. �4� may be represented
in the form

�
−nmax

nmax �
nL

�n+1�L i�t�dt

t − x
= �

−nmax

nmax �
0

L i�t��− 1�ndt

t − �x − nL�
, �8�

where nmax= w
2L .

Introducing the quantity u= t−x
L , we rewrite the sum in Eq.

�8� as

S =
1

L
�

n=−nmax

n=nmax �− 1�n

u + n
=

1

L
�1

u
+ 2u �

n=1

n=nmax �− 1�n

u2 − n2� ,

which in the limit nmax→� is reduced to the expression19

S =
�

L sin��u�
. �9�

After that, substituting Eq. �9� into Eq. �7� we arrive at the
following integrodifferential equation for the current density:

4��

c

di

dx
+

2�

cL
�

0

L i�t�dt

sin
��t − x�

L

= − Hz�x� + �0n�x� . �10�

First we consider the Meissner state of the superconduct-
ing film �n�x�=0�. The solution of Eq. �10� for Meissner
current density iM�x� depends on two parameters: � /L and
a /L. For enough thin SC films the effective penetration
depth � may be much larger than the domain size: ��L. For
such narrow-domain SC-FM structure the self-field of the
current �the second term in Eq. �10�� may be neglected. After
that, using the expression for Hz�x� �Eq. �2�� we find from
Eq. �10�

iM�x� =
cm

2��
ln

cosh
�a

L
+ cos

�x

L

cosh
�a

L
− cos

�x

L

. �11�

As it follows from Eq. �11� at the domain walls the value
of the Meissner current density is maximal

�iM�x = nL�� =
cm

��
ln coth

�a

2L
. �12�

In Fig. 2 we present the result of the numerical solution of
Eq. �10� �n�x�=0� and sheet-current density iM�x� calculated
from Eq. �11� for ��L and the different values of the pa-

rameter a /L. As can be seen in the figure the analytical pro-
files clearly agree with the numerical ones right until �	L.

In the opposite case ��L and for a�� the first term
in Eq. �10� is much smaller than the second almost
everywhere inside the domains except in a region of a width
� near the domain wall. By using the obvious symmetry
i�x�=−i�L−x� and introducing the following transformation
of the variable,

z = sin2�x

L
,

L

2
	 x 	 L . �13�

Equation �10� is reduced to the well-known singular equation
of the Cauchy type for i�u� /
u,

2

c
�

0

1 i�u�du

u�u − z�

=
H0

z + �2 −
�0n�z�


z
, �14�

where

H0 =
4�m

L

1 + �2, � = sinh

�a

L
. �15�

The current distribution obtained from Eq. �14� in the
Meissner state �n�z�=0� is expressed as

iM�z� = −
cH0�

2�
1 + �2


1 − z

z + �2 , �16�

or in the original variables �0	x	L�,

iM�x� =
2cm�

L

cos
�x

L

sin2�x

L
+ �2

. �17�

Figure 3 shows iM�x� obtained from Eq. �17� for �

L =0.01
several values of the distance a between the SC and FM
films. For comparison the numerical solution of Eq. �10� is

λ

FIG. 3. �Color online� Distribution of sheet current density iM�x�
over the half of domain for wide-domain structure for three values
of interlayer distance a between the SC and the FM films. Solid
symbols correspond to numerical solution of Eq. �10� and curves in
Eq. �17�. In the inset we present the zoom of current distribution far
from domain boundary.
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also shown. It can be seen that the analytical results �Eq.
�17�� are in good agreement with the numerical calculations
if the separation a is larger than �. At small a	� the mag-
netic field of the FM Hz�x� �see Eq. �2�� is strongly changed
near the domain wall that leads to an increase in the differ-
ential term in Eq. �10�. So in this case Eq. �14� and its solu-
tion for iM�x� �Eqs. �16� and �17�� become invalid. We as-
sume in this paper that if ��L then a��.

III. CHAIN OF VORTICES INSIDE
THE SUPERCONDUCTING STRIP

When the maximum current density reaches the value
iM = jdepds �where jdep is the depairing current density�20,21

vortices can penetrate into a superconducting layer near the
domain wall. Here we consider the simple realization of such
vortex state: the chain of vortices �along the x axis� with
alternating directions corresponding to the direction of the
magnetization in the ferromagnetic domains �Fig. 1�.

The total energy of such a chain per domain is the sum of
two terms,

E�x0� = Es�x0� + Ev−f�x0� . �18�

The first one is the energy of the vortex located at
x=x0�0�x0�L�, including its interaction with other vorti-
ces. For the narrow-domain structure �L��� Es�x0� coin-
cides with the energy of a vortex inside thin narrow SC
film,22

Es�x0,L � �� = �0 ln� L

�
sin��x0

L
�,  	 x0 	 L −  ,

�19�

where  is the coherence length, �0=
�0

2

16�2�
, and �0 is the

magnetic-flux quantum.
In the opposite case when the domain size L is much

greater than the characteristic length of the vortex interaction
�, the single-vortex energy Es�x0� is the same as the energy
of one vortex located in infinite SC film,

Es�x0,L � �� = �0 ln�2�


� . �20�

Equation �20� holds �in lowest order in �

L � for all
0�x0�L except within a narrow region of width � near the
domain boundaries. If �x0�� the interaction with the vor-
tex located at x=−x0 in the neighboring domain becomes
essential so that

Es� � x0 � �,L � �� = �0 ln�2x0


� . �21�

The second term in Eq. �18� corresponds to the interaction
energy between the vortex and magnetic structure,23,24 which
may be represented as the energy of a vortex interacting with
the Meissner current,7

Ev−f�x0� = −
�0

2c
�

0

x0

i�x�dx , �22�

where the current density i�x�= iM�x� is determined by Eqs.
�11� and �17� for L�� and L��, respectively. Figure 4
shows the normalized energy of vortex chain �per vortex�
obtained from Eqs. �11�, �18�, �19�, and �22� for different
values of the magnetization M.

At the equilibrium all vortices are located at the centers of
their domains due to the symmetry. If the vortex energy
E�x0=L /2��0 then the considering configuration of the vor-
tices is metastable. The minimum vortex energy E�x0=L /2�
becomes negative if m�mc�a�, where

mc�a� =
�0

4�L

ln
L

�

�
0

1/2

ln

cosh
�a

L
+ cos �t

cosh
�a

L
− cos �t

dt

for L � �

�23�

and

mc�a� =
�0

16��

ln
�



arctan�1/sinh
�a

L
� for L � � . �24�

It is clear that if the FM strip is displaced higher above
the SC film, the interaction becomes weaker and it is
necessary to increase the value mc to satisfy the condition
E�x0=L /2�=0. The minimum value mc

min for the narrow-
domain structure L�� is determined from Eq. �20� at a=0:
mc

min=
�0

16LG ln L
� , L��, where G�0.916 is the Catalan

constant. For the wide-domain structure at ��a�L mc�a�,
as it follows from Eq. �24�, weakly depends on the distance
a and equals

FIG. 4. Normalized total energy of the vortex interacting with
the FM strip and other vortices as a function of its position for

different magnetizations: �1� m
m0

=11.8, �2� m
m0

=19, �3�
mc

m0
=23, and

�4�
ms

m0
=73. Here m0=

�0

4�� , L
� = 1

2 , a
L = 2

� , and 

L = 0.16
� .
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mc =
�0

8�2�
ln

�


. �25�

The energy minimum at x0=L /2 is separated from the
domain boundaries by the energy barrier �annihilation bar-
rier� which prevents the creation of the vortex-antivortex
pairs and penetration of the vortices into the domains. The
height of this barrier decreases by an increase in the magne-
tization M, and at some value m=ms�a��mc�a� the barrier is
suppressed. The critical magnetization ms�a� determines the
transition to the mixed state. From the condition

� �E�x0�
�x0

�
x0=

= 0, �26�

we find

ms�a� =
�0

8�

1

ln coth
�a

2L

, L � � , �27a�

ms�a� =

�0L sinh
�a

L

16�2�
, � � L . �27b�

For magnetization m�mc�a� the vortex-ferromagnet in-
teraction reduces, which leads to the positive value of the
vortex energy at the local minimum E�x0=L /2��0 �Fig. 5�.
At m�m1�a� this minimum disappears and vortices and an-
tivortices tend to leave off their domains and annihilate near
the domain boundaries. Thus m1�a� determines the lower
boundary of the metastable states of vortex chain in the su-
perconducting film. The value m1�a� may be found from the
equation

� �2E

�x0
2 �

x0=L/2
= 0. �28�

Using this condition and Eqs. �11�, �18�, �19�, and �22� we
obtain for the narrow-domain structure

m1�a� =
�0

8L
cosh

�a

L
, L � � . �29�

To calculate the corresponding value for the wide-domain
structure we need a more accurate expression than Eq. �20�
for the energy of vortex inside the domain �x0���, including
its interaction with vortices located in the neighborhood.
This expression is found in the Appendix. Using Eqs. �17�,
�18�, �22�, and �A4� we have

m1�a� =
2�0

�3L
�� +

1

�
�, � � L . �30�

Notice that our results for considering here the vortex
structure with one vortex per domain may be applied also for
configurations with one chain of vortices per domain if the
vortex-vortex distance is large enough �at least larger than
��. Earlier Erdin et al.15 considered the discrete lattice of
vortices �in SFB with zero distance between ferromagnet and
superconductor� in which the vortices are situated periodi-

cally on chains in the stripe domains. From his numerical
calculations it follows that if the FM domain size is fixed, the
configurations with a single-vortex chain per domain appear
first in the mixed state that correlates with our results.

IV. MIXED STATE OF THE SC/FM BILAYER

Now we consider the vortex structure of the SC/FM bi-
layers with many vortices per domain which is characterized
by the average density n�x�. In the absence of a bulk pinning
this function is nonzero in the region of the SC film where
the sheet current density i�x�=0. This condition allows us to
find n�x� and i�x� from Eq. �10�.

A. Narrow-domain structure

In the leading approximation with respect to L /��1,
from Eq. �10� we obtain inside the domain 0	x	L,

n�x� = �
0, x 	 


Hz�x�
�0

, 
 	 x 	 L − 


0, L − 
 	 x 	 L ,
� �31�

FIG. 5. �a� The vortex density in narrow-domain structure for
various values of the separation a between the films: �1� a

L =0.1 and
�2� a

L =0.3. �b� The vortex density in wide-domain structure for
various values of the separation a between the films: �1� a

L =0.1 and
�2� a

L =0.3.
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i�x� = �iM�x� − iM�
�, 0 	 x 	 


0, 
 	 x 	 L − 


iM�x� + iM�
�, L − 
 	 x 	 L ,
� �32�

where Hz�x� and iM�x� are determined by Eqs. �2� and �11�.
The trapped flux � inside a domain �per unit length� corre-
sponding to this distribution of vortices is

��
� = �0�



L−


n�x�dx = 4m ln

cosh
�a

L
+ cos

�


L

cosh
�a

L
− cos

�


L

,

�33�

where 
 is a parameter, characterizing the width of the re-
gion l occupied by the vortices; l=L−2
.

Figures 5�a� and 5�b� show the vortex density �at given
value of �� for various values of the separation a between
the films correspondingly. Note that as it follows from Eqs.
�2� and �31� at a�a0, where a0= L

� arcsinh 1 a domelike flux
distribution appears �see curve 2 in Fig. 5�a��.

The mixed state described by Eqs. �31�–�33� is stable
�more precisely, metastable� as long as there are energy bar-
riers for vortex entry in each domain and vortex exit from it.
To find the boundaries of the region for the existence of such
metastable mixed states with the fixed trapped flux �, we
assume that there is one test vortice �with corresponding po-
larity� in each domain. Such vortices placed periodically in
the SC film form the vortex chain along the x axis. The
energy of the test vortex E�x0 ,�� placed in the vortex-free
region 	x0	
��� is obtained from Eqs. �18�, �19�, and
�22�, but unlike in Sec. III the current density i�x� in Eq. �22�
is determined by Eq. �32�;

E�x0,�� =
�0

2

16�2�
ln� L

�
sin

�x0

L
� +

��0x0

16��

−
m�0

4��
�

0

x0

ln

cosh
�a

L
+ cos

�x

L

cosh
�a

L
− cos

�x

L

dx . �34�

The magnetization men���, at which the barrier for vortex
entry is suppressed and vortice pairs of different polarity
nucleates at the domain wall, can be found from Eqs. �26�
and �34�,

men��� = ms +
�

8 ln coth
�a

2L

, �35�

where ms is the magnetization for entry of the first vortex
�Eq. �27a�� into the domain. At low magnetization
m	mex��� the dependence E�x0 ,�� on x0 becomes
monotonic that corresponds to disappearance of the barrier to
vortex exit from the domain. So mex��� may be found from
the conditions

�E�x0,��
�x0

= 0,
�2E�x0,��

�x0
2 = 0. �36�

Substituting Eq. �34� into Eq. �36� we arrive at the fol-
lowing equations for x0 and m=mex���:

�0

L
cot

�x0

L
+ � = 4m ln

cosh
�a

L
+ cos

�x0

L

cosh
�a

L
− cos

�x0

L

, �37a�

�0

L
=

8m cosh
�a

L
sin3�x0

L

cosh2�a

L
− cos2�x0

L

. �37b�

In the range of values of m near m1�a�, as it follows from
Eqs. �37a� and �37b�,

mex��� = m1�a��1 +
3

2
� L

�0
�1 −

2

3 cosh2 �a/L�
1/2

�2/3� ,

�38�

where m1�a�, the lower stability boundary of the vortex
chain, is determined by Eq. �29�. Note that such dependence
mex��� at small values of the flux � is similar to the depen-
dence of the exit magnetic field Hex��� for narrow SC strip
exposited in the perpendicular magnetic field.22 For
m�m1�a�,

mex��� =
�

2 ln coth
�a

2L

. �39�

B. Wide-domain structure

We now turn to the solution of Eq. �10� for small � /L. As
it was shown in Sec. II in this case �and for a��� the first
term in Eq. �10� can be dropped and current and vortex dis-
tributions can be found from integral �14�. When the current
density at the edges of the domain becomes equal to the
depairing current density, vortices nucleate at the domain’s
edges and penetrate into the domain occupying the central
region �	x	L−�. The resulting current flows in the
vortex-free region of width x0 near the edges of the domain
and satisfies the equation

2

c
�

0

u0 i�u�du

u�u − z�

=
H0

z + �2 , �40�

where 0	z	u0, u0=sin2 ��
L . Thus the current distribution is

similar to the current density in the Meissner state �Eq. �16��,

i�z� = −
cH0�

2�
u0 + �2


u0 − z

z + �2 . �41�

Returning to the original coordinates, we obtain
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i�x� = �
2cm�

L

 1 + �2

u0 + �2


u0 − sin2�x

L

�2 + sin2�x

L

, �42�

where the positive �negative� sign applies to 0	x	��L−�
	x	L�. The corresponding density of vortex is obtained
from Eq. �7� by using Eq. �41�,

n�z� =
H0�

�0


z − u0


u0 + �2�z + �2�
, u0 	 z 	 1 �43�

or in the original variables ��	x	L−��,

n�x� =
4�m�

�0L

 1 + �2

u0 + �2


sin2�x

L
− u0

�2 + sin2�x

L

. �44�

Equation �44� shows that the vortex density has a dome-
like distribution within the domain if the boundary of the
vortex-filled region � satisfies the condition

cos
2��

L
	 sinh2�a

L
. �45�

Obviously, this inequality holds for any values of the dis-
tance a between the FM and SC films if the trapped vortex
flux is low enough that ��

L
4 . For sufficiently large a,

sinh�a
L �1 and any values of � inequality �45� holds, also.

Figure 7 shows the vortex distribution for various values of
parameter a and �.

By means of standard integration one finds the magnetic
flux connected with the vortex structure

� = �0�
�

L−�

n�x�dx = 8�m��q� , �46�

��q� =
K�q� − �1 − n���n,q�


1 − n
. �47�

Here q=
1−u0=cos��
L , n= q2

1+�2 = cos2 ��/L
cosh2 �a/L , K�q�, and ��n ,q�

are complete elliptic integrals of the first and third kinds,
respectively. For a�L, n�q2, and after some algebra we
obtain from Eqs. �46� and �47�

� =
8�am

L

K�q� − E�q�

1 − q2

, �48�

where E�q� is a complete elliptic integral of the second kind.
Using Eq. �39� for the current density one can compute, as

in Secs. I–III, the critical magnetizations, determining the
boundaries of metastability of the mixed state with the fixed
flux �. Thus the critical magnetization men��� for which the
annihilation barrier disappears and the next vortex penetrates
into the domain can be found from the equation

ms = men
1 − q2

1 − n
, �49�

where ms is the entry magnetization for the first vortices
entering the domain �Eq. �27b��.

A combination of Eqs. �43� and �46� yields the resulting
equation for men���,

� = 8�men����1 − � ms

men
�2���1 − � ms

men
�2 1

1 + �2�1/2� .

�50�

For small fluxes ��ms the behavior of men��� is char-
acterized by the linear equation

men��� = ms +
��

4�
. �51�

For ��ms vortices occupy almost all the domains. In this
case. as it follows from Eqs. �2� and �44�, n�x��

Hz�x�
�0

corre-
sponds to the linear dependence

men��� =
�

4 ln

1 + �2 + 1

1 + �2 − 1

. �52�

A similar asymptotic solution has been obtained in Ref.
25 for the barrier-suppressing field Hen��� for a thin-film
strip of width w�w��� placed in a perpendicular magnetic
field.

V. TRANSPORT PROPERTIES OF THE SC/FM BILAYER

In this section we study the influence of the domain struc-
ture of the FM on the critical current of the superconducting
film. We consider here the case when the current flows along
the domains, neglects the influence of the bulk pinning, and
supposes that our superconducting film is very wide W��;
and the transport current is mainly concentrated near the
edges of the film. As a result the sheet current density is
equal to zero in the central regions of the film because
i	 Ic /W	
� /W with Ic	
�W.26,27

When the magnetization is small or the interlayer distance
a is large, the magnet-induced current density is small every-
where in the superconducting film and vortices/antivortices
can appear only by entering via edges of the superconductor.
Because the induced current is positive in one part of SC
inside the domain and it is negative in another part of the
domain �see Fig. 2�, the vortices/antivortices cannot pass the
film and dissipation starts only when the current density at
any point inside the domain has the same sign �see black
curve in Fig. 6�. It gives us the criterion for finding the criti-
cal current at relatively small magnetization or large values
of a: �iM + iI� �x=L=0.

With increasing magnetization �or decreasing distance a�
the total sheet current density iM + iI may reach depairing
sheet current density jdepds near the edges of the domains and
vortex-antivortex pairs will be created in that regions �see
green curve in Fig. 6�. Nucleated vortices will reach the re-
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gion of the superconductor where the current density
changes sign and stops there. In equilibrium one has i=0 in
the region filled with vortices. The dissipation starts when
the regions with vortices and antivortices touch each other
under domain boundaries next to the domain boundaries
where the vortices were nucleated �see Fig. 6�. It gives us the
criterion for finding the critical current in this range of pa-
rameters �iM + iI� �x=0= jdepds. Coordinates of the region which
is filled with vortices �x0�x�L� and where i=0 �see Fig. 6�
can be found using the condition �iM + iI� �x0=L=0.

Using the above ideas we calculate the critical current
�per domain� of our system as function of the distance a for
different values of the magnetization. We consider the nar-
row domains L	� �as the more realistic case for modern
FM/SC structures, see discussion below�. In this limit iI
=const and using Ginzburg-Landau critical current density
jdep=c�0 /12
3�2�L

2 as estimation of the depairing current
density jdep= jGL we easily find that

iI=Ic
= �2jGLds ln coth��a/2L�M/M0, a � a�

jGLds�1 – 2 ln coth��a/2L�M/M0�, a � a�,
�
�53�

where a�= 2L
� arctan h�e−M0/4M� and M0=�0 /6
3�dm. As a

result the critical current �per domain� for our bilayer system
Ic=�0

L(iM�x�+ iI=Ic
)dx is equal to

Ic

jGLdsL
=

2M

M0
ln coth��a/2L�, a � a� �54�

and should be calculated numerically for a�a�. In Fig. 7 we
present dependence Ic�a� for three values of the magnetiza-
tion M.

There is the optimal distance a� when the critical
current reaches the maximal value at fixed magnetization
�see Fig. 7�. Indeed, for small value of a the current density
grows very fast near the domain boundaries and it is small in
the rest of the superconductor �see Fig. 2�. It results in small
value of the critical current because the major part of the
superconductor will be occupied by vortices and i=0 in that

area. For large value of a the current induced by the magnet
is small everywhere and the critical current is also small. We
should note that at a=a� the critical current reaches half of
maximal possible value Ic

max= jGLdsL for arbitrary value of
M. At a=a� and I= Ic the sheet current i�0�= jdepd and
i�L�=0. It is obvious that for wide domains L�� the maxi-
mal critical current can also reach Ic

max /2 �because in this
limit the transport current density varies in the scale of the
width of the film26,27 and can be considered as constant on
the scale of the domain width L�W� but the optimal dis-
tance a� can be found only via numerical solution of Eq. �10�
if a��� or by using Eq. �14� if a���.

In real superconductors the pinning current density jp is
always much smaller than the depairing �Ginzburg-Landau�
current density �although the pinning mainly defines the
critical current because jpw� jGL� �Ref. 28� for commonly
used superconductors with w���. Therefore our results on
the critical current could be applied to realistic SC/FM bilay-
ers with interlayer distance a	a� when the current density is
about jGL /2 almost over the whole superconductor at I= Ic
�see red curve in Fig. 6�. The good candidate to observe the
predicted effect is NbGe superconducting films
��0�	7 nm, �L�0�	1.15 �m, and ds	20 nm� with its
very low bulk pinning even at T=Tc /2 �Ref. 29� and artificial
Co/Pd multilayered ferromagnetic films with out-of-plane
magnetization M 	300 Oe, thickness dm	20 nm, and typi-
cal width of domain L	200 nm.30 At these parameters
L�� �narrow domains� and a�	3 nm. Another good
candidate is niobium superconducting thin film with
�0�	10 nm, �L�0�	150 nm, and ds	100 nm. For its
parameters L	� and the optimal distance a�	9 nm is
again in the range of the modern methods of fabricating
SC/FM structures. For above parameters one may also ne-
glect the influence of the current-induced magnetic field
�H� 	 jdepds /c	5 Oe for NbGe and H� 	700 Oe for Nb� on
the magnetization of the chosen ferromagnetic film.30 The
only strict condition for observation of the predicted effect is
the shape of the domain structure—the domains should be
directed along the direction of the transport current. In Co/Pd
ferromagnet the pattern of domains is very complicated.30
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FIG. 6. �Color online� Distribution of current density i�x� in two
adjacent domains at I= Ic for three values of interlayer distance a
and M =0.15M0. Dotted curved line corresponds to vortex/
antivortex distribution in the superconductor at small value of a.
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FIG. 7. �Color online� Dependence of the critical current of

SC/FM bilayer on the distance between SC and FM layers for three
values of magnetization M.
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This problem can probably be solved by using antiferromag-
netic layers with the shape of stripes which are able to create
the elongated in one direction domain due to so-called ex-
change bias effect or by using the ferromagnetic layers with
steplike thickness, which also should favor the creation of
the stripelike domains.

VI. CONCLUSIONS

In this paper the Meissner and vortex states of the
ferromagnet/type-II superconductor bilayer were investi-
gated when the ferromagnet has domain structure and per-
pendicular magnetic anisotropy. The system under consider-
ation consists of two thin FM and SC films separated by
finite distance a. We have calculated the values of the critical
magnetization for the formation of two periodic vortex struc-
tures: �i� the chain of vortices �one vortice per domain� with
alternating directions corresponding to the direction of the
magnetization in the ferromagnetic domains and �ii� the
mixed state of the SC �i.e., the structure with many vortices
per domain� characterized by the average vortex density
n�x�.

We derive the integrodifferential equation which deter-
mines the current and vortex distributions in the domain.
Two assumptions were made in order to obtain this
equation. First we suppose the periodic dependences
of the current and vortex distributions on the coordinate
x : i�x�= i�x+2L� , n�x�=n�x+2L�. A second assumption is
that the current and vortex densities do not vary in the y
direction so that we have an essentially one-dimensional
problem. There are two characteristic limiting cases, L��
�the narrow-domain structure� and L�� �the wide-domain
structure�, for which the analytical solution of Eq. �10� can
be obtained. In the latter the results are valid only if the
distance a between the FM and SC films is large enough.
Thus the analytical expression for Meissner current density
�Eq. �17�� is in good agreement with the numerical solution
of Eq. �10� for a�10�.

In ultrathin magnetic films the observed values of L vary
in range, from 1 to 100 �m.31,32 On the other hand the ef-

fective penetration depth �=
�L

2

ds
essentially depends on the

thickness ds of the superconducting film and for ultrathin

high Tc may reach the value of 	50 �m.33 So both cases
considered above may be realized in practice.
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APPENDIX

Equation �20� for energy per vortex of the chain in the
FM/SC bilayers with wide-domain structure does not include
the interaction energy between the vortices Eint which is pro-
portional to the small ratio � /L�1. To find the critical mag-
netization m1�a� we need to calculate this term. Consider the
vortex located near the equilibrium position x=L /2 at x=x0
in the domain 0	x	L. Because the width of the domain L
is much larger than the range of the vortex interaction in a
thin SC film �, we take into account only the interaction of
the vortex with nearest vortices located at x=2L−x0 and
x=−x0. As it is known the interaction energy between two
vortices with different polarities is given by

Eint = −
�0

2

16��
�H0� r

2�
� − Y0� r

2�
� , �A1�

where H0 and Y0 are Struve and Bessel functions and r is the
distance between vortices. At distance r�� this yields

Eint = −
�0

2

4�2r
. �A2�

Taking the above approach, it follows from Eq. �A2� that
the interaction energy per vortex of the chain is

Eint�x0� = −
�0

2

16�2� 1

L − x0
+

1

x0
� �A3�

and, correspondingly,

Es�x0� =
�0

2

16�2�
ln

2�


+ Eint�x0� . �A4�
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